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BACKGROUND & AIMS: Capsule endoscopy has revolution-
ized investigation of the small bowel. However, this technique
produces a video that is 8–10 hours long, so analysis is time
consuming for gastroenterologists. Deep convolutional neural
networks (CNNs) can recognize specific images among a large
variety. We aimed to develop a CNN-based algorithm to assist
in the evaluation of small bowel capsule endoscopy (SB-CE)
images. METHODS: We collected 113,426,569 images from
6970 patients who had SB-CE at 77 medical centers from July
2016 through July 2018. A CNN-based auxiliary reading model
was trained to differentiate abnormal from normal images
using 158,235 SB-CE images from 1970 patients. Images were
categorized as normal, inflammation, ulcer, polyps, lym-
phangiectasia, bleeding, vascular disease, protruding lesion,
lymphatic follicular hyperplasia, diverticulum, parasite, and
other. The model was further validated in 5000 patients (no
patient was overlap with the 1970 patients in the training
set); the same patients were evaluated by conventional anal-
ysis and CNN-based auxiliary analysis by 20 gastroenterolo-
gists. If there was agreement in image categorization between
the conventional analysis and CNN model, no further evalua-
tion was performed. If there was disagreement between the
conventional analysis and CNN model, the gastroenterologists
re-evaluated the image to confirm or reject the CNN catego-
rization. RESULTS: In the SB-CE images from the validation
set, 4206 abnormalities in 3280 patients were identified
after final consensus evaluation. The CNN-based auxiliary
model identified abnormalities with 99.88% sensitivity in
the per-patient analysis (95% CI, 99.67–99.96) and 99.90%
sensitivity in the per-lesion analysis (95% CI, 99.74–99.97).
Conventional reading by the gastroenterologists identified
abnormalities with 74.57% sensitivity (95% CI, 73.05–76.03)
in the per-patient analysis and 76.89% in the per-lesion
analysis (95% CI, 75.58–78.15). The mean reading time per
patient was 96.6 ± 22.53 minutes by conventional reading
and 5.9 ± 2.23 minutes by CNN-based auxiliary reading
(P < .001). CONCLUSIONS: We validated the ability of a CNN-
based algorithm to identify abnormalities in SB-CE images.
The CNN-based auxiliary model identified abnormalities with
higher levels of sensitivity and significantly shorter reading
times than conventional analysis by gastroenterologists. This
algorithm provides an important tool to help gastroenterolo-
gists analyze SB-CE images more efficiently and more
accurately.
Keywords: Artificial Intelligence; Imaging; Intestine; Lesion.

he small bowel (SB) is difficult to examine by
Ttraditional endoscopic and radiologic techniques,
and it has thus been seen as the black box of the gastroin-
testinal tract in the past few decades.1,2 In recent years, the
introduction of capsule endoscopy (CE) has revolutionized
the diagnosis, monitoring, and management of SB diseases.1

CE can be used to clearly observe abnormalities of the SB,
such as erosions, ulcerations, angiodysplasias, petechiae,
venectasias, lymphangiectasia, erythema, edema, changes of
the villi, and external constrictions,2 and it has been rec-
ommended by the current European guidelines for patients
with obscure gastrointestinal bleeding (OGIB), suspected
Crohn’s disease with negative ileocolonoscopy result, sus-
pected SB tumors, and inherited polyposis syndromes.3,4

However, the major limitation of CE is the high time cost
of processing the 8–10 hours of video data and reporting the
results (time cost of 1–2 hours per case for a gastro-
enterologist).5–7

Recently, deep-learning algorithms, such as convolutional
neural networks (CNNs), have been shown to exceed human
performance in visual tasks and have been widely used to
enable the extraction of highly representative features.8,9 A
deep-learning–based artificial intelligence (AI) model has
been reported to have similar performance to dermatologists
in the classification of skin cancers.9 Moreover, a deep-
learning model has been validated in the real-time differenti-
ation of adenomatous and hyperplastic diminutive colorectal
polyps during analysis of unaltered standard colonoscopy
videos.10 However, a deep-learning model has not yet been
established in the identification of SB-CE abnormalities.
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https://doi.org/10.1053/j.gastro.2019.06.025


WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Deep convolutional neural networks (CNNs) can
recognize specific images among a large variety.

NEW FINDINGS

We validated the ability of a CNN-based algorithm to
identify abnormalities in SB-CE images. The CNN-based
auxiliary model identified abnormalities with higher levels
of sensitivity and significantly shorter reading times than
conventional analysis by gastroenterologists.

LIMITATIONS

This system requires evaluation in a large, prospective
study.

IMPACT

This algorithm provides an important tool to help
gastroenterologists analyze SB-CE images more
efficiently and more accurately.
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In this study, we used CNN to train a deep-learning–
based AI model to differentiate abnormal images from
normal images in SB-CE examinations and validated the
algorithm model using a large multicenter data set.
Methods
Study Design

This study was performed in 77 participating medical ex-
amination centers with the ESView platform (developed by
Ankon Technologies Co, Ltd, Shanghai, China). Data for 6970
patients (113,426,569 images) having SB examination with CE
in these centers were collected between July 2016 and July
2018: 1970 cases were used to establish the CNN-based
auxiliary reading model in the training phase, and 5000 cases
were used to validate the CNN-based auxiliary reading model in
the validation phase. There was no patient overlap between the
2 groups. Written informed consent was obtained from all pa-
tients. Patient data were anonymized, and any personally
identifying information was omitted. This study was approved
by the Ethics Committee of Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China.

Because the purpose of our CNN-based system design is to
ensure the highest sensitivity—that is, to screen out as many
lesions as possible—the abnormal images in this study were
defined as 2 different categories: clinically significant abnormal
lesions (abnormal lesions, eg, inflammation, ulcer, polyps,
protruding lesion, vascular disease, bleeding, parasite, and
diverticulum) and normal variants (lymphangectasia, lymphoid
hyperplasia, etc).

Capsule Endoscopy System and Procedure
Patients were examined with CE (Ankon Medical Technol-

ogies Co, Ltd). The Ankon CE system consists of 3 components:
an endoscopic capsule, a data recorder, and a computer
workstation with software for real-time viewing and control-
ling. The capsule is 27 mm in length and 11.8 mm in diameter;
it weighs 4.8 g. It has a single camera, and the field of view is
larger than 140� ± 10%. The capsule passes passively through
the SB, and the dynamic frame rate is 0–2 frames/s. Images are
captured and recorded at an average rate of 0.8 frames/s with a
resolution of 480 � 480 pixels. Each video consists of a
continuous single image or frame. Each image or frame in a
video was tagged with a specific number, in the order that the
image was taken, and saved to a folder. The battery life of the
capsule is �8 hours.

All patients received a bowel preparation with polyethylene
glycol electrolyte solution, fasted overnight, and arrived at the
centers for CE examination in the morning. At 30 minutes
before CE examination, patients ingested 30 mL simethicone
suspension (Espumisan, 40 mg/mL; Berlin-Chemie, Berlin,
Germany) dissolved in 50 mL water; a small amount of water
was then used to swallow the capsule, as previously reported.11

The SB cleansing score used in this study was based on pre-
viously published studies,12,13 and the SB image quality results
of the patients enrolled in this study were evaluated
(Supplementary Table 1). We used ESNavi (a cloud platform
developed by Ankon Technologies Co, Ltd) as a remote reading
system, enabling remote examination, reading, and data storage
and sharing.
The Training Phase of a Convolutional Neural
Network–Based Auxiliary Reading Model

We developed a deep-learning–based AI model to identify
abnormal images from normal images in the SB-CE examina-
tion. This included 2 phases: a training phase and a validation
phase (Figure 1).

In the training phase, we trained a CNN-based algorithm—a
type of artificial neural network used in deep learning and a
method for the analysis of visual imagery—to recognize
abnormal SB images. First, the model was trained by data from
ImageNet (a large visual database designed for use in visual
object recognition software) to obtain a preprocessing model
(Figure 1). Second, labeled SB-CE image data (indicating
whether or not the image had a lesion) was used for training
by the residual neural network (ResNet) model14 based on the
preprocessing model (Figure 1). In detail, we selected normal
images and abnormal images (including 10 categories:
inflammation, ulcer, polyps, lymphangiectasia, bleeding,
vascular disease, protruding lesion, lymphatic follicular hy-
perplasia, diverticulum, and parasite) to train the model. To
ensure that at least 1000 representative images for each
abnormal category were analyzed, the 1970 patients were
chosen as the training group (a total of 158,235 images were
totally selected by 2 experienced gastroenterologists from
Wuhan Union Hospital). As a result, the CNN model parameters
were updated to obtain a trained CNN model for the assess-
ment of SB-CE images.

The CNN-based system would calculate, for each image, the
probability that it was an abnormal image according to the
probability threshold value set by the model (Figure 2A). The
structure of residual learning of the CNN-based system is
shown in the Figure 2B, which called “shortcut connections.”14

The probability threshold value (sensitivity, 95.4%; specificity,
96.99%) of the CNN-based system used in this study was set
based on the receiver operating characteristic curve using the
Youden index method (Figure 2C). The confusion matrix of the
CNN-based AI model in the training phase is shown in
Supplementary Table 2.



Figure 1. Study flow charts of the training and validation phases.
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The Validation Phase of a Convolutional Neural
Network–Based Auxiliary Reading Model

In the validation phase, all 5000 recordings (113,268,334
images) were read by both conventional reading and CNN-
based auxiliary reading by 20 gastroenterologists who
routinely perform SB-CE examination and evaluation in clinical
practice.

For conventional reading, all 5000 videos from the 5000
patients were read by the team of 20 gastroenterologists. These
videos were randomly and equally distributed to the 20 gas-
troenterologists, and each gastroenterologist received 250
videos. Each gastroenterologist read all original images in each
video. For CNN-based auxiliary reading, all original SB-CE images
from the 5000 patients were first input into the CNN-based
auxiliary reading model, and suspected abnormal images auto-
filtered by the model were further reviewed manually by gas-
troenterologists. The suspected abnormal images were selected
by the CNN-based auxiliary reading model as described in the
training phase. All gastroenterologists independently evaluated
all 250 cases and made a diagnosis. Diagnoses and the total time
for each SB-CE image evaluation were recorded.

When a diagnostic agreement was reached between con-
ventional and CNN-based auxiliary reading, no further evalua-
tion was carried out. In the case of a discordant final diagnosis
and/or different lesions observed, the 20 gastroenterologists
sat together, and the images of the patient were reevaluated to
confirm or reject the discordance. Only the final consensus di-
agnoses were considered as the reference standard of diag-
nosis. For lesions identified by conventional reading that were
not detected by CNN-based auxiliary reading in a patient, we
checked through auto-filtered suspected abnormal images to
determine whether the CNN-based auxiliary reading model had
failed to detect the lesion. For lesions identified by CNN-based
auxiliary reading that were not detected by conventional
reading in a patient, we reexamined the filtered suspected
abnormal images identified by CNN-based auxiliary reading and
original videos of that patient. Because each suspected
abnormal image identified by the CNN-based auxiliary system
in a given patient was specifically tagged, it could be easily
traced to the location in the original video for this patient.

Statistical Analysis
Diagnoses made by gastroenterologists were sorted and

counted according to the following categories: normal, inflam-
mation, ulcer, polyps, lymphangiectasia, bleeding, vascular dis-
ease, protruding lesion, lymphatic follicular hyperplasia,
diverticulum, parasite, and other, both per patient and per lesion.
All relevant data were entered into a customized database and
then analyzed with SPSS software, version 21.0 (IBM, Armonk,
NY). A chi-squared test was performed to analyze the difference
in detection rates between conventional and CNN-based auxil-
iary reading for each specific SB disease classification. An
independent-sample t test was used to compare the total time
spent to evaluate the SB-CE images between conventional
reading and CNN-based auxiliary reading. TheMcNemar testwas
applied to compare the diagnostic performance between con-
ventional reading and CNN-based auxiliary reading using the
consensus evaluation review as the reference standard; all
McNemar tests were analyzed with SAS software, version 9.4
(SAS Institute Inc., Cary, NC). The Cochran-Mantel-Haenszel test
was used to analyze the interobserver agreement (k) among the
20 gastroenterologists in per-patient and per-lesion analyses,
using SAS software, version 9.4. Sensitivity, specificity, positive
predictive values, and negative predictive values were described
as percentage and 95% confidence interval (CI). A value of
P < .05 was considered statistically significant.



Figure 2. CNN-based algorithm reading model. (A) Process for detection of abnormal SB-CE images. Data flow is from left to
right: an image of SB-CE is subsequently processed with the CNN-based model (ResidualNet), and images of suspicious
anomalies are finally filtered out and output. (B) The structure of residual learning of CNNs. (C) Receiver operating charac-
teristic (ROC) curve of the CNN-based algorithm in recognition of SB-CE lesion images.
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Results
Detection of Small-Bowel Disease by Capsule
Endoscopy Using the Convolutional Neural
Network–Based Auxiliary Reading Model

A total of 5000 patients having SB-CE examination were
enrolled in this study. The CNN-based auxiliary reading
model can detect most of the abnormal SB images, including
inflammation, ulcer, polyps, lymphangiectasia, bleeding,
vascular disease, protruding lesion, lymphatic follicular hy-
perplasia, diverticulum, parasite, and other. Representative
abnormal SB images, including endoscopic and CNN-
processed images, are shown in Figure 3.
High Sensitivity of the Convolutional Neural
Network–Based Auxiliary Reading Model in the
Detection of Small-Bowel Abnormalities

Diagnoses of SB abnormalities with conventional reading
and CNN-based auxiliary reading, per patient and per lesion,
were analyzed according to consensus evaluation
(Supplementary Tables 3 and 4). Overall, in the per-patient
analysis, gastroenterologists achieved a sensitivity of
74.57% (95% CI, 73.05–76.03) in conventional reading and
a sensitivity of 99.88% (95% CI, 99.67-99.96) in CNN-based
auxiliary reading (P < .0001) (Table 1). Conventional
reading missed diagnoses in 834 patients, and CNN-based
auxiliary reading missed diagnoses in 4 patients. In the
per-lesion analysis, gastroenterologists achieved a sensi-
tivity of 76.89% (95% CI, 75.58–78.15) in conventional
reading and a sensitivity of 99.90% (95% CI, 99.74–99.97)
in CNN-based auxiliary reading (P < .0001) (Table 1).
Conventional reading missed 972 abnormal diagnoses, and
CNN-based auxiliary reading missed 4 abnormal diagnoses:
2 vascular diseases, 1 ulcer, and 1 protruding lesion.

When the secondary per-lesion analysis of clinically sig-
nificant lesions and normal variants was performed, results
showed that the sensitivity for clinically significant lesions
was 88.02% (95% CI, 86.75–89.19) by conventional reading
compared with 99.86% (95% CI, 99.61–99.95) by CNN-
based auxiliary reading and that the sensitivity for normal
variants was 54.98% (95% CI, 52.34–57.58) by conventional
reading compared with 100% (95% CI, 99.66–100) by CNN-
based auxiliary reading (P < .0001 for both) (Table 2).

Furthermore, the sensitivity and specificity of the con-
ventional reading and the CNN-based auxiliary reading
classified by abnormal SB image types in both per-patient
and per-lesion analyses were calculated (Table 2).



Figure 3. Representative capsule endoscopy images of SB abnormalities, including original endoscopic images and CNN-
processed images: (A) inflammation, (B) polyps, (C) ulcer, (D) lymphangiectasia, (E) lymphatic follicular hyperplasia, (F)
diverticulum, (G) parasite, (H) protruding lesion, (I) bleeding, and (J) vascular disease.

Table 1.Diagnostic Performance of Conventional Reading Group and CNN-Based Auxiliary Reading Group in Per-Patient and
Per-Lesion Analyses

Type of analysis Conventional reading group, % (95% CI)
CNN-based auxiliary reading

group, % (95% CI) P value

Per-patient analysis
Sensitivity 74.57 (73.05–76.03) 99.88 (99.67–99.96) <.0001
Specificity 100 (99.72–100) 100 (99.72–100) >.99
PPV 100 (99.80–100) 100 (99.85–100) >.99
NPV 67.35 (65.48–69.16) 99.77 (99.36–99.92) <.0001

Per-lesion analysis
Sensitivity 76.89 (75.58–78.15) 99.90 (99.74–99.97) <.0001
Specificity 100 (99.72–100) 100 (99.72–100) >.99
PPV 100 (99.85–100) 100 (99.89–100) >.99
NPV 63.89 (62.04–65.70) 99.77 (99.36–99.93) <.0001

NPV, negative predictive value; PPV, positive predictive value.

1048 Ding et al Gastroenterology Vol. 157, No. 4

CLINICAL
AT



Table 2.Sensitivity and Specificity of Conventional and CNN-Based Auxiliary Readings According to SB Abnormal Lesions or
Normal Variants in Per-Patient and Per-Lesion Analyses

Type of analysis Conventional reading, % (95% CI) CNN-based auxiliary reading, % (95% CI) P value

Per-patient analysis
SB abnormal lesions
Inflammation

Sensitivity 93.87 (92.58–94.94) 100 (99.72–100) <.0001
Specificity 100 (99.89–100) 100 (99.89–100) >.99

Ulcer
Sensitivity 98.12 (96.00–99.18) 99.73 (98.28–99.99) .0339
Specificity 100 (99.91–100) 100 (99.91–100) >.99

Polyps
Sensitivity 78.16 (72.56–82.92) 100 (98.19–100) <.0001
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Protruding lesion
Sensitivity 56.14 (49.43–62.64) 99.56 (97.20–99.98) <.0001
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Vascular disease
Sensitivity 68.11 (60.80–74.65) 98.92 (95.74–99.81) <.0001
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Bleeding
Sensitivity 79.49 (63.06–90.13) 100 (88.83–100) .0047
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Parasite
Sensitivity 100 (69.87–100) 100 (69.87–100) >.99
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Diverticulum
Sensitivity 100 (69.87–100) 100 (69.87–100) >.99
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Normal variants
Lymphangiectasia

Sensitivity 51.35 (47.94–54.75) 100 (99.44–100) <.0001
Specificity 100 (99.91–100) 100 (99.91–100) >.99

Lymphatic follicular hyperplasia
Sensitivity 46.69 (40.50–52.99) 100 (98.16–100) <.0001
Specificity 100 (99.92–100) 100 (99.92–100) >.99

Other
Sensitivity 71.99 (66.55–76.87) 100 (98.46–100) <.0001
Specificity 100 (99.91–100) 100 (99.91–100) >.99

Per-lesion analysis
SB abnormal lesions

Sensitivity 88.02 (86.75–89.19) 99.86 (99.61–99.95) <.0001
Specificity 100 (99.85–100) 100 (99.85–100) >.99

Inflammation
Sensitivity 93.87 (92.58–94.94) 100 (99.72–100) <.0001
Specificity 100 (99.86–100) 100 (99.86–100) >.99

Ulcer
Sensitivity 98.12 (96.00–99.18) 99.73 (98.28–99.99) .0339
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Polyps
Sensitivity 78.16 (72.56–82.92) 100 (98.19–100) <.0001
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Protruding lesion
Sensitivity 56.14 (49.43–62.64) 99.56 (97.20–99.98) <0.0001
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Vascular disease
Sensitivity 68.11 (60.80–74.65) 98.92 (95.74–99.81) <.0001
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Bleeding
Sensitivity 79.49 (63.06–90.13) 100 (88.83–100) .0047
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Parasite
Sensitivity 100 (69.87–100) 100 (69.87–100) >.99
Specificity 100 (99.90–100) 100 (99.90–100) >.99
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Table 2.Continued

Type of analysis Conventional reading, % (95% CI) CNN-based auxiliary reading, % (95% CI) P value

Diverticulum
Sensitivity 100 (69.87–100) 100 (69.87–100) >.99
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Normal variants
Sensitivity 54.98 (52.34–57.58) 100 (99.66–100) <.0001
Specificity 100 (99.89–100) 100 (99.89–100) >.99

Lymphangiectasia
Sensitivity 51.35 (47.94–54.75) 100 (99.44–100) <.0001
Specificity 100 (99.89–100) 100 (99.89–100) >.99

Lymphatic follicular hyperplasia
Sensitivity 46.69 (40.50–52.99) 100 (98.16–100) <.0001
Specificity 100 (99.90–100) 100 (99.90–100) >.99

Other
Sensitivity 71.99 (66.55–76.87) 100 (98.46–100) <.0001
Specificity 100 (99.90–100) 100 (99.90–100) >.99
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Compared with the conventional reading group, the CNN-
based auxiliary reading group showed a significant superi-
ority in sensitivity for inflammation (P < .0001), ulcer
(P ¼ .0339), polyps (P < .0001), protruding lesion (P <
.0001), vascular disease (P < .0001), bleeding (P ¼ .0047),
lymphangiectasia (P < .0001), and lymphatic follicular hy-
perplasia (P < .0001) detections and no difference in the
sensitivity for parasite and diverticulum detections.

High Detection Rate of the Convolutional Neural
Network–Based Auxiliary Reading Model in the
Detection of Small-Bowel Abnormalities

Among 5000 patients, 3280 (a total of 4206 SB abnormal
diagnoses) had an SB abnormal diagnosis after consensus
evaluation review (Supplementary Tables 3 and 4).
Furthermore, the detection rate of the conventional reading
and the CNN-based auxiliary reading classified by abnormal
SB image types both per patient and per lesion were
analyzed (Supplementary Tables 5 and 6). In the per-lesion
analysis, gastroenterologists detected 54.57% (n ¼ 3234) of
the total SB-CE diagnoses in conventional reading group,
whereas the number was 70.91% (n ¼ 4202) in the CNN-
based auxiliary reading group (Supplementary Table 5) (P
< .0001). Compared with conventional reading, CNN-based
auxiliary reading had a higher detection rate in some types
of SB abnormalities: increased detection rates were 7% in
lymphangiectasia (P < .0001), 2.32% in lymphatic follicular
hyperplasia (P < .0001), 1.74% in inflammation (P ¼ .034),
1.67% in protruding lesion (P < .0001), 0.96% in polyps
(P ¼ .007), and 0.96% in vascular disease (P ¼ .001).
However, there was no significant difference in bleeding,
ulcer, parasite, and diverticulum between these 2 groups.

A secondary per-lesion analysis of clinically significant
lesions and normal variants was performed, and the results
showed that the total detection rate increased 16.34% by
CNN-based auxiliary reading compared with conventional
reading (70.91% vs 54.57%), 5.57% for SB abnormal le-
sions, and 10.77% for normal variants (Supplementary
Table 5 and Figure 4).
High Time Efficiency of the Convolutional Neural
Network–Based Auxiliary Reading System in the
Detection of Small-Bowel Abnormalities

With conventional reading, an average of 22,654 images
were read for each patient, and an average of 578 images
were identified as abnormal and filtered out for each patient
with CNN-based auxiliary reading (Figure 5A). Moreover,
the mean reading time was 96.6 ± 22.53 minutes with
conventional reading, whereas the mean reading time with
CNN-based auxiliary reading was 5.9 ± 2.23 minutes
(Figure 5B) (P < .001).
Discussion
In this study, we explored a CNN-based algorithm model

to assist with evaluation of SB-CE images and successfully
validated the model with a large multicenter data set.
Several highlights should be emphasized in our study. First,
to our knowledge, this is the largest study assessing a CNN-
based auxiliary reading model in SB-CE recordings with
multicenter data. Second, to our knowledge, this is the first
report of a CNN-based deep-learning model developed to
assist with the diagnosis of multiple subtypes of abnormal
SB lesions (including the normal variants) that can provide a
new effective reading pattern for SB-CE. Third, we built a
CNN-based algorithm with a high sensitivity (improving
sensitivity from 76.89% to 99.90%), a high screening rate
(reducing the number of images from 22,654 to 578), a high
lesion detection rate (improving detection from 54.57% to
70.91%), and high time efficiency (reducing the average
time required for reading from 96.6 minutes to 5.9 minutes)
for detection of SB abnormalities using CE.

CE is increasingly performed in the clinical examination
of SB diseases. The main limitation of CE is the long time
required to review images. Deep-learning models have
achieved excellent performance in image recognition of skin
cancers9 and real-time differentiation and detection of
adenomatous and colorectal polyps10 and gastrointestinal
angiectasia.5 Therefore, we aimed to develop a CNN-based



Figure 4. The detection
rate for SB abnormal le-
sions or normal variants in
the conventional reading
group (blue) and CNN-
based auxiliary reading
group (yellow). *P < .05,
**P < .01, ***P < .0001.
NS, no significance.
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auxiliary reading model for assessment of SB-CE images that
would reduce the reading time.

In the past decade, several computer-based medical
systems have been made to analyze CE images using algo-
rithms15; however, to our knowledge, they have yet to yield
a sufficient diagnostic performance to be considered for
widespread clinical use.5 A systematic review and meta-
analysis verified the validity of suspected blood indicator
software (Medtronic, Minneapolis, MN) in CE, but the
overall performance for bleeding or potentially bleeding
lesions was not satisfactory (sensitivity of 55.3%, specificity
of 57.8%).16 The Smart QuickView software (Given Imaging,
Yokneam, Israel) could enable the user to view only the
images that contain possible interesting areas, as detected
by proprietary algorithms in the RAPID application, but
results were discordant with conventional human reading in
28.3% of cases.17 The result of multicenter prospective
evaluation of the ExpressView (Capsovision, Saratoga, CA)
reading mode for SB-CE studies showed that the mean
reading time of capsule films was reduced and that a
sensitivity of 78.6% for the detection of relevant lesions was
achieved.18 Zhou et al19 reported that a trained CNN-based
model (GoogLeNet) was able to distinguish the frames from
capsule endoscopy clips of patient with celiac disease pa-
tient vs control individuals, with a 100% sensitivity and
specificity.19 Leenhardt et al5 developed an algorithm that
associated a segmentation approach with a CNN-based
approach for deep feature extraction, which yielded a
sensitivity of 100.0% and a specificity of 96% for gastro-
intestinal angiectasia detection. However, this is not enough
to solve the real clinical problem posed by CE: the detection
of tens or even hundreds of abnormalities is necessary.15

We believe that the main purpose of the work by Leen-
hardt et al and ours is quite different. Leenhardt et al’s study
developed a CNN-assisted diagnosis tool for the detection of
1 specific disease, gastrointestinal angiectasia, whereas the
main purpose of our study was not limited to identifying
only 1 specific disease; it aimed to develop an algorithm
capable of differentiating multiple types of abnormal SB-CE
images from normal images. This CNN-based algorithm
could provide a novel timesaving tool for gastroenterolo-
gists to read SB-CE videos more effectively and accurately.

In our study, we showed that the trained CNN-based
auxiliary reading model was able to detect and correctly
identify most of the abnormal SB images, including inflam-
mation, ulcer, polyps, lymphangiectasia, bleeding, vascular
disease, protruding lesion, lymphatic follicular hyperplasia,
diverticulum, and parasite. Of note, we showed that CNN-
based algorithm reduced the reading time of SB-CEs by
93.9%, to 5.9 minutes. In a previous study, the ExpressView
algorithm reduced the reading time of SB-CEs by 50%, from
39.7 minutes to 19.7 minutes,18 and the mean reading time
in QuickView mode was 11.6 minutes.17 In terms of the
overall diagnostic performance of SB abnormalities, a



Figure 5. The average number and time for SB-CE reading in conventional reading and CNN-based auxiliary reading. (A) The
average number of images read by conventional reading (blue) and by CNN-based auxiliary reading (yellow). (B) The total time
of SB-CE examination video (black) and the mean reading time for the SB-CE images by the conventional reading group (blue)
and by CNN-based auxiliary reading (yellow). ***P < .0001.
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significant increase in sensitivity and lesion detection rate
were found in the CNN-based auxiliary reading group
compared with the conventional reading group. However,
when a secondary analysis of clinically significant lesions
and normal variants was performed, the results showed that
the total detection rate increased 16.33% by the CNN-based
auxiliary reading algorithm compared with the conventional
group (70.90% vs 54.57%). For SB abnormal lesions, the
detection rate increased 5.57%. For normal variants, the
detection rate increased 10.77%.

The algorithm used in this study had an error rate of
only 3% (ie, 3% of suspected abnormal images identified by
CNN-based auxiliary were actually normal images). The
reason for setting up this error recognition rate was that we
were trying to achieve higher sensitivity for the CNN-based
auxiliary system. In other words, we were trying to screen
out as many suspected abnormal images as possible.
Furthermore, we made the interobserver agreement (k)
among 20 gastroenterologists in their capsule interpretation
in a per-patient and per-lesion analysis, and the results
showed that the intraobserver agreement among the 20
gastroenterologists was high (k scores of 0.783–0.811 in
conventional reading mode and 0.937–0.944 in CNN-based
auxiliary reading mode) (Supplementary Table 7).

As we all know, it has been well reported that an overall
estimated colon polyp miss rate was more than 20%, with
an increasing miss rate with decreased size of the polyp and
adenoma during the colonoscopy.20,21 A recent study from
Wang et al22 reported that an AI system significantly
increased hyperplastic polyp detection rates from 35.07%
to 64.93%, which is an increase of almost 30 percentage
points, especially for polyps with a size of <5 mm.22 For SB-
CE reading, maintaining a high level of concentration while
viewing 50,000–100,000 images of the same organ is diffi-
cult23 and might entail an inherent risk of lesions being
missed by physicians during the reading process.5,23 There
is evidence that some missed lesions present on the visual
field during the reading but are not recognized by the
endoscopist.

The most common CE diagnoses were bleeding/
vascular diseases, inflammation, ulcer, and polyps.24 The
mucosal inflammation was referred to as the inflammatory
changes of intestine under endoscopy, defined in previous
publications, including erosion, Crohn’s disease, NSAID
enteritis, intestinal tuberculosis, radiation enteritis, eosin-
ophilic enteritis, etc.24,25 Bleeding was defined as lesions
with signs of either fresh or coagulated blood. A series of
representative images of inflammation and bleeding taken
by capsule endoscopy in SB were shown (Supplementary
Figures 1 and 2). The detection rates of inflammation, ul-
cer, and polyps were similar to those in other studies.24

However, the detection rates for bleeding and vascular
diseases in our study were lower than those in other
studies, particularly for OGIB. We believe that the main
reason for this is that we randomly enrolled our study
participants, who were either hospital inpatients or
asymptomatic individuals in the general population who
had physical examination and SB-CE. Because we did not
specifically recruit patients with OGIB, the frequency of
bleeding was expected to be much lower than the selected
patient population with suspected OGIB. Our center pre-
viously published an article26 on patients with OGIB who
had negative esophagogastroduodenoscopies and colonos-
copy results. In that article, the positive detection rate of
bleeding was found to be 68.9%. The result was compa-
rable to the detection rate of bleeding worldwide, as Liao
et al reported in a systematic review.27 Therefore, the
reason for the lower detection rate or severity of bleeding
in our study is that we randomly selected our patient
population with unknown risk of OGIB.
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The CNN-based auxiliary reading system we have
developed is intended to be used in centers with CE
equipment to serve as an auxiliary system to reduce the
reading time and increase the detection rate during
reviewing. The implementation of this model requires a
standard graphics processing unit engine and the CNN-
based auxiliary reading system, which can be integrated
into the software used for reviewing CE. This study was
conducted using Ankon capsule endoscopy equipment, and
we will also try to verify the effectiveness of this algorithm
in other types of capsule endoscopy reviewing in the future.

There are several limitations to this study. First, data for
this study were collected retrospectively, and well-designed
prospective studies are needed to confirm the results. Sec-
ond, similar to colonoscopy studies, there is no true crite-
rion standard for interpretation of SB-CE; therefore, there
may be an underlying miss rate that we cannot assess.
Third, because patients included in this study were unse-
lected, the detection rates of some kinds of SB lesions
differed from those reported in other studies. Therefore, the
results may lack generalizability. Fourth, although the CNN-
based auxiliary reading model can detect SB abnormalities,
it cannot further classify the SB abnormalities. Therefore,
further studies may be needed to develop algorithms for the
classification of specific SB diseases. Finally, even though we
included 5000 patients in this study, investigation in larger
data sets should be conducted to verify the results before
clinical use.

In summary, we present a deep-learning–based AI model
for differentiating abnormal images from normal images in
SB-CE examination. The CNN-based auxiliary model was
then verified in a large-scale cohort, and it achieved excel-
lent performance by providing a rapid reading time and
efficient detection rate. We believe that the CNN-based
auxiliary reading system proposed in our study may be an
important advance for SB-CE reading and could significantly
reduce the cost of SB-CE reading.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2019.06.025.
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Supplementary
Figure 2. Representative
bleeding lesions pictured
by CE in the SB.

Supplementary
Figure 1. Representative
inflammation lesions
pictured by CE in the SB.
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Supplementary Table 1.Evaluation of the Quality of SB Cleansing

Patient no. Cleana images, n Total SB images, n SB clean duration, s SBTT, s
Percentage of
clean time (%)

Objective
scoreb

1 21,576 21,586 23,799 23,818 99.92 0.08
2 21,020 21,811 24,743 25,306 97.78 2.22
3 23,195 23,339 21,927 22,185 98.84 1.16
4 19,026 22,029 15,667 19,017 82.38 17.62
5 19,618 19,865 21,403 21,921 97.64 2.36
6 19,293 19,503 20,269 20,461 99.06 0.94
7 19,814 19,895 22,143 22,188 99.80 0.20
8 17,857 18,719 17,113 20,071 94.54 5.46
9 20,844 20,898 21,487 21,595 99.50 0.50
10 17,587 18,700 18,197 20,071 90.66 9.34

NOTE. We randomly selected 10 patients in the validation group and evaluated the quality of SB cleansing. SBTT, small-bowel
transit time.
aThe SB mucosa was defined as clean if, at any time, less than 25% of the mucosal surface was covered by intestinal contents
or food debris.
bThe percentage of SBTT during which the small intestinal mucosa was not clean was then calculated as an objective score.
SB cleansing was considered adequate if the objective score was <10% and inadequate if �10%.

Supplementary Table 2.The Confusion Matrix of the CNN-
Based AI Model in the Training
Phase

Predicted condition, n

Normal Abnormal

True condition, n Normal 32,052 992
Abnormal 327 6812

1054.e2 Ding et al Gastroenterology Vol. 157, No. 4



Supplementary Table 3.Diagnoses of SB Abnormalities by Using the Conventional and CNN-Based Auxiliary Reading
Methods in a Per-Patient Analysis

CNN-based auxiliary reading group

þ þ – –

Conventional reading group Consensus evaluation þ – þ –

þ þ 2443 3
þ – 0 0
– þ 833 1
– – 0 1720

Supplementary Table 4.Diagnoses of SB Abnormalities by Using the Conventional and CNN-Based Auxiliary Reading
Methods in a Per-Lesion Analysis

CNN-based auxiliary reading group

þ þ – –

Conventional reading group Consensus evaluation þ – – –

þ þ 3230 4
þ – 0 0
– þ 972 0
– – 0 1720
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Supplementary Table 6.The Detection Rate for SB Abnormal Lesions or Normal Variants by the Conventional or CNN-Based
Auxiliary Reading Method According to the Total Number of Patients

Types of SB-CE diagnoses

Conventional reading CNN-based auxiliary reading

P valuen Detection rate, % n Detection rate, %

SB abnormal lesions
Inflammation 1576 31.52 1679 33.58 .028
Ulcer 366 7.32 372 7.44 .818
Polyps 204 4.08 261 5.22 .007
Protruding lesion 128 2.56 227 4.54 <.0001
Vascular disease 126 2.52 183 3.66 .001
Bleeding 31 0.62 39 0.78 .337
Parasite 12 0.24 12 0.24 >.99
Diverticulum 12 0.24 12 0.24 >.99

Normal variants
Lymphangiectasia 438 8.76 853 17.06 <.0001
Lymphatic follicular hyperplasia 120 2.40 257 5.14 <.0001
Other 221 4.42 307 6.14 <.0001

Supplementary Table 5.The Detection Rate for SB Abnormal Lesions or Normal Variants by the Conventional or CNN-Based
Auxiliary Reading Method According to the Total Number of SB-CE Diagnoses

Types of SB-CE diagnoses

Conventional reading CNN-based auxiliary reading

P valuen Detection rate, % n Detection rate, %

SB abnormal lesions 2455 41.43 2785 47.00
Inflammation 1576 26.59 1679 28.33 .034
Ulcer 366 6.18 372 6.28 .820
Polyps 204 3.44 261 4.40 .007
Protruding lesion 128 2.16 227 3.83 <.0001
Vascular disease 126 2.13 183 3.09 .001
Bleeding 31 0.52 39 0.66 .338
Parasite 12 0.20 12 0.20 >.99
Diverticulum 12 0.20 12 0.20 >.99

Normal variants 779 13.14 1417 23.91
Lymphangiectasia 438 7.39 853 14.39 <.0001
Lymphatic follicular hyperplasia 120 2.02 257 4.34 <.0001
Other 221 3.73 307 5.18 <.0001
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Supplementary Table 7. Interobserver Agreement Among 20
Gastroenterologists in Their
Capsule Interpretations in Per-
Patient and Per-Lesion Analyses

Type of
analysis

Conventional
reading group, k

CNN-based auxiliary
reading group, k

Per patient 0.811 0.937
Per lesion 0.783 0.944
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